
The following project is my use of the package CoxnetSurvivalAnalysis from scikit-survival to
implement a Cox proportional hazards model using a machine learning approach with a L1
(lasso/absolute value) cost. Survival modeling allows me to model survival time when the final event
is not observed (censored) for many records. In my experience, it's uncommon to use a machine
learning approach with survival modeling.

Unlike most machine learning implementations, my purpose will not be to make predictions but rather
to undertake an exploratory analysis to determine which variables are potentially predictive or
explanatory of survival. This sort of purpose is generally served by inferential statistics. However,
employing inferential statistics is challenging when there are a large number of potential predictors.
Putting hundreds of variables in a model often leads to issues of multicollinearity. Further, using an
algorithm such as forward or stepwise selection becomes computationally difficult requiring an
extreme number of model runs. Hence, some sort of pre-screening criteria is generally used when
employing a statistical model with a large number of potential predictors.

In this project, I will create three faux datasets with two continuous and two binary variables to
compare the performance of the lasso proportional hazards model to standard inferential statistical
testing in the same model. These datasets will be:

1. One continuous and one binary variable are predictors. The other two are uncorrelated with
survival or the predictors.

2. One continuous and one binary variable are predictors. The other continuous variable is
LIGHTLY correlated with the continuous predictor. The other binary variable is LIGHTLY
correlated with the binary predictor.

3. One continuous and one binary variable are predictors. The other continuous variable is
HIGHLY correlated with the continuous predictor. The other binary variable is HIGHLY correlated
with the binary predictor.

After the previous three comparisons are made, I then add to #3 996 uncorrelated predictors as a
proof of concept for high dimensionality applications motivating this project.

Case 1:

I use numpy random to create a faux dataset with 100,000 observations. In this case, there are four
variables, but only two are predictors of survival. One of these predictors is continuous while the
other is binary. The other two variables are independent of survival, the predictors, and eachother. In
this case, it should be simple to determine which of the four variables are predictors using any
technique (including bivariate analysis).

Comparison Model:

For comparison I fit a Cox proportional hazards model with a chisquare test for each of the four
coefficients. From the 'p' column we see that the statistical tests correctly identify 'var2' and 'var4' as
the predictors. The other uncorrelated variables have very high p-values (0.60 and 0.76). While
simply dropping all insignificant variables from the model in batch does not always result in the
correct answer, in this case it would.



model lifelines.CoxPHFitter

duration col 'dur'

event col 'event'

baseline estimation breslow

number of observations 100000

number of events observed 50057

partial log-likelihood -517201.54

time fit was run 2023-01-05 03:46:46 UTC

coef exp(coef) se(coef)
coef

lower
95%

coef
upper

95%

exp(coef)
lower

95%

exp(coef)
upper

95%
cmp

to z p -
log2(p)

index -0.00 1.00 0.00 -0.00 0.00 1.00 1.00 0.00 -1.28 0.20 2.33

var1 -0.02 0.98 0.02 -0.05 0.01 0.95 1.01 0.00 -1.09 0.27 1.87

var2 2.32 10.19 0.02 2.29 2.36 9.84 10.54 0.00 132.92 <0.005 inf

var3 -0.00 1.00 0.01 -0.02 0.02 0.98 1.02 0.00 -0.41 0.68 0.55

var4 -0.51 0.60 0.01 -0.52 -0.49 0.59 0.61 0.00 -54.89 <0.005 inf

Concordance 0.69

Partial AIC 1034413.08

log-likelihood ratio test 21200.16 on 5 df

-log2(p) of ll-ratio test inf

Lasso Model:

For the machine learning/lasso model I use a 70% training sample and a 30% cross validation
sample. I estimate the model eight times with eight different weights (hyperparameter values) for the
L1 cost parameters (0,0.000001,0.000001,0.00001,0.0001,0.001,0.01,0.1). I then evaluate the
concordance rate in the cross validation dataset for each model run.

The highest concordance rate is when the hyperparameter is zero, or in other words when we run
the full model with four variables. We know that this is not the correct answer. However, in the figure
for Model 1 below, we see that there is no substantial change in concordance rate when we increase
the hyperparameter value to 0.0001 (see red line).



Setting the hyperparameter to 0.0001, we can see that the estimates for Variable 1 and Variable 3
are zero. This is the correct answer. (The lasso cost will set the estimate for irrelevant variables to
zero.)



Case 2:

Case 2 is setup very similarly to Case 1. However, in Case 1 Variable 1 and Variable 3 were
independent of survival, the two predictors, and eachother. In Case 2, the continuous Variable 1 is
set to be slightly correlated with Variable 2 (the other continuous variable). The binary Variable 3 is
set to be slightly correlated with Variable 4 (the other binary variable). This case is more difficult as
generally bivariate analysis would find that survival is correlated to Variable 1 and Variable 3 due to
their correlation with the correct predictors Variable 2 and Variable 4. However, a model controlling
for the predictors would generally still generate the correct solution even in face of this light
multicollinearity.

Comparison Model:

Similarly to Case 1, a Cox proportional hazards model is run and p-values from chisquare tests
correctly identify the predictors as Variable 2 and Variable 4.

model lifelines.CoxPHFitter

duration col 'dur'

event col 'event'

baseline estimation breslow

number of observations 100000

number of events observed 49865

partial log-likelihood -515086.64

time fit was run 2023-01-05 03:58:59 UTC

coef exp(coef) se(coef)
coef

lower
95%

coef
upper

95%

exp(coef)
lower

95%

exp(coef)
upper

95%
cmp

to z p -
log2(p)

index -0.00 1.00 0.00 -0.00 0.00 1.00 1.00 0.00 -0.38 0.71 0.50

var1 0.00 1.00 0.02 -0.04 0.04 0.96 1.04 0.00 0.12 0.91 0.14

var2 2.35 10.45 0.02 2.31 2.38 10.09 10.83 0.00 131.25 <0.005 inf

var3 -0.01 0.99 0.01 -0.03 0.01 0.97 1.01 0.00 -0.91 0.36 1.47

var4 -0.50 0.61 0.01 -0.52 -0.48 0.60 0.62 0.00 -53.65 <0.005 inf

Concordance 0.69

Partial AIC 1030183.28

log-likelihood ratio test 21694.88 on 5 df

-log2(p) of ll-ratio test inf

Lasso Model:

In the exact same manner as for Case 1, the lasso model is run eight times and the same
hyperparameter (0.0001) is selected from the chart below.



As in Case 1, the use of the hyperparameter 0.0001 results in the correct model with only Variable 2
and Variable 4 having non-zero estimates in Case 2.



Case 3:

Case 3 is exactly the same as Case 2 except instead of Variable 1 and Variable 3 having light
correlation with the predictors, they are now highly correlated with the predictors (though not
perfectly). Higher levels of multicollinearity are a problem for bivariate analysis and both the
proportional hazards model with statistical tests and the proportional hazards model with lasso.
Therefore, the following will determine how the two models still perform.

Comparison Model:

In the same manner as the first two cases, a cox proportional hazards model is run and chisquare
tests are evaluated. The model still easily identifies Variable 2 and Variable 4 as the correct
predictors.

model lifelines.CoxPHFitter

duration col 'dur'

event col 'event'

baseline estimation breslow

number of observations 100000

number of events observed 49885

partial log-likelihood -515490.57

time fit was run 2023-01-05 04:09:47 UTC

coef exp(coef) se(coef)
coef

lower
95%

coef
upper

95%

exp(coef)
lower

95%

exp(coef)
upper

95%
cmp

to z p -
log2(p)

index -0.00 1.00 0.00 -0.00 0.00 1.00 1.00 0.00 -0.14 0.89 0.17

var1 -0.01 0.99 0.08 -0.16 0.14 0.85 1.15 0.00 -0.10 0.92 0.12

var2 2.31 10.08 0.06 2.18 2.44 8.88 11.43 0.00 35.89 <0.005 934.82

var3 -0.00 1.00 0.01 -0.03 0.02 0.97 1.02 0.00 -0.39 0.70 0.52

var4 -0.49 0.61 0.01 -0.51 -0.47 0.60 0.62 0.00 -46.03 <0.005 inf

Concordance 0.69

Partial AIC 1030991.15

log-likelihood ratio test 21055.71 on 5 df

-log2(p) of ll-ratio test inf

Lasso Model:

Like the previous two cases, the hyperparameter 0.0001 is selected for the model.



Like the previous two cases, only Variable 2 and Variable 4 have non-zero estimates.

It's important to note that given another random dataset I encountered during development, it was
found that Variable 1 had a non-zero estimate. This estimate was very close to zero. Given that I
have normalized all of my variables prior to running the lasso models, the variable estimates are
directly comparable to eachother. It's possible that the user could have manually removed this
variable due to it's small estimate and arrived at the correct result. If one wished to employ a more
objective criteria than the small estimate, he could run a model similar to the comparison model on
the three variables selected by the lasso stage and determine which coefficients are statistically
signficant. In the case of only four potential variables, it would be pointless to run both models on the
same data. But given a large number of potential predictors, running the lasso model as a first stage
to narrow down the list of potential predictors only to 'guarantee' the final list with statistical testing
could be a good course of action.



Final Example:

The previous three cases only have four potential predictors, of which two are correct. For these
cases, there is no reason to employ a lasso type model. These were only provided as an illustration
or example. Instead, a statistical model similar to the comparison models above is more correct. All
variables can be added to the model and only the statistically significant variables retained. An even
more correct approach would be to employ a forward, backwards, or stepwise selection algorithm
that is more likely to identify the correct variables in face of multicollinearity in the model.

However, given a large number of potential predictors statistical models are more difficult to
implement. Forward, backwards, and stepwise selection will require a prohibitive number of model
runs. Instead, the lasso technique describe above can be used.

The below example adds 996 uncorrelated and irrelevant variables to the four variables already
found in Case 3 (i.e. two predictors and two variables highly correlated to these predictors). Again,
the hyperparameter value chosen is 0.0001.



Due to the high number of potential variables (1,000), only the variables with non-zero estimates are
retained. These are, again, Variable 2 and Variable 4. These are the correct variables.

Conclusion:



Three cases were provided for survival modeling in a Cox proportional hazards model. Each had a
small number of potential predictors. In all three cases, the lasso model identified the same (correct)
predictors as the statistical model assuming a suitable hyperparameter was chosen. This
hyperparameter was not chosen to maximize concordance in the cross-validation set, but rather the
highest value was chosen such to not lead to a substantial decrease in concordance.

Note, the lasso approach has few benefits compared to the statistical comparison model given few
potential predictors. But given the success encountered in the first three cases, the lasso method
was employed to a large number of potential predictors (1,000). In this case, the statistical model
would be difficult to employ without reducing the number of potential predictors using some sort of
pre-screening criteria. The lasso method again quickly identified the correct predictors.

It's certainly possible that lasso could identify the incorrect predictors, just as this was observed in at
least one random dataset used when developing this project. Note, this is also a possibility in
statistical testing. However, the hyperparameter selection process in lasso is somewhat less
objective than common statistical criteria. It's possible that a two step process could be employed
where variables identified by lasso can be confirmed by statistical testing in a statistical model. Note
this is similar to pre-screening frequently done to reduce dimensionality in a statistical model.
However, using lasso as a pre-screen in probably more accurate than many of the bivariate methods
commonly employed.


